Решение... Советы... Windows 10

Синтезатор частоты на микросхеме AD9835. Простой, универсальный синтезатор на Si5351 Схемы синтезаторов частоты с pic контроллерами

В данной статье мы постараемся ещё раз осветить такие темы, как создание подпрограмм и работа по шине I2C в Bascom.

В качестве примера приведём проект синтезатора высокой частоты для связного приёмника, работающего в диапазоне 10 м (28 - 29,7 МГц).

Сам приёмник выполнен на достаточно популярной микросхеме МС3362. Данная микросхема представляет собой полный приёмный тракт с двойным преобразованием частоты для узкополосной ЧМ связи. Однако нас будет интересовать два независимых узла: первый - смеситель с перестраиваемым варикапом гетеродином и усилителем первой промежуточной частоты (ПЧ) и второй - смеситель с гетеродином, поскольку эти узлы наиболее часто применяются в коротковолновых конструкциях. Следует отметить, что оба гетеродина имеют выходы через эмиттерные повторители, т.е. допускают подключение цифровой шкалы, что в значительной степени облегчает нашу задачу.

Структурная схема МС3362 с нужными нам узлами приведена на Рис.1. Отметим также, что микросхема имеет высокие технические характеристики. Параметры первого смесителя при применении внутреннего гетеродина нормированы до частоты 190 МГц, поэтому мы будем использовать его для построения синтезатора в качестве генератора, управляемого напряжением (ГУН).

Принципиальная схема приёмника приведена на Рис.2. Сигнал с антенны, прошедший диапазонный полосовой фильтр L1, L2, C14-C16, L3, L4 поступает на вход первого смесителя МС3362 вывод 24, второй его вход (вывод 1) соединён с общим проводом по высокой частоте. С выхода первого усилителя промежуточной частоты (УПЧ1) вывод 19 сигнал ПЧ проходит через четырёх - резонаторный лестничный фильтр на частоту 4,33 МГц с полосой пропускания 2,4 КГц. С выхода фильтра сигнал поступает на второй смеситель (вывод 17). На второй вывод этого смесителя (вывод 18) подано напряжение +5В. Частота гетеродина второго смесителя стабилизирована кварцевым резонатором ZQ5 на частоту 4,33 МГц. Поскольку рабочая частота этого генератора должна соответствовать скату характеристики кварцевого фильтра, то её сдвигают вниз от номинального значения катушкой индуктивности L6, включённой последовательно с резонатором.

Напряжение питания +5В подаётся на вывод 6 микросхемы МС3362. Оно стабилизировано микросхемой DA3 (78L05), а микросхема DA2 (LM368) - выходной усилитель звуковой частоты, питается от напряжения +12В.
Частота генератора плавного диапазона (ГПД или ГУН) регулируется подачей напряжения с синтезатора частоты на варикап (вывод 23) и снимается с вывода 20 микросхемы МС3362. Катушки индуктивности - это готовые дроссели со стандартной индуктивностью. Катушки связи наматываются поверх них.
Следует отметить, что использование всех узлов микросхемы МС3362 стандартное и соответствует рекомендациям фирмы - производителя.

В качестве синтезатора частоты выбрана микросхема LM7001, которая предназначена для построения синтезаторов с системой ФАПЧ (фазовая автоподстройка частоты) в бытовых радиоприёмных устройствах. Структурная схема LM7001 представлена на Рис.3.

Выводы Хout и Xin - выход и вход усилителя сигнала образцовой частоты; к этим выводам подключается кварцевый резонатор. СЕ - вход сигнала разрешения записи. CL - вход тактовых импульсов записывания. Data - информационный вход. SC - Syncro Conrol - выход сигнала контрольной частоты 400 КГц. BSout1 - Bsout3 - выходы управления внешними устройствами. С помощью этих сигналов выполняется коммутация диапазонов. AMin и FMin - входы программируемого делителя частоты АМ и FМ сигналов. Pd1 и Pd2 - выходы частотно-фазового детектора в режимах FM и АМ соответственно.

В соответствии с основными техническими характеристиками LM7001 выбираем частотный интервал FMin 5…30 МГц при шаге частотной сетки 10 КГц (при частоте образцового генератора 7200 КГц).

Введение информации происходит последовательно, начиная с младшего бита коэффициента деления частоты программируемого делителя, который может работать в двух режимах АМ и FM . Мы рассмотрим выбранный выше режим - FM. В данном режиме для программирования делителя используются биты D0 - D13. Максимальное значение коэффициента деления 3FFF (16383). Последовательность посылки битов приведена в таблице:


Биты Т0 и Т1 - тестовые, они должны быть всегда установлены в низкий уровень. Биты В0 - В2 и ТВ управляют состоянием выходов BSout1 - Bsout3, и не будут использованы нами. Биты R0 - R2 содержат информацию о шаге сетки. В нашем случае R0=1, R1=R2=0 (шаг = 10 КГц). Бит S определяет режим работы программируемого делителя частоты: 1 - FM, 0 - AM (в нашем случае S=1).
Рассмотрим пример составления управляющей последовательности. Пусть приёмник работает на частоте 28 МГц с промежуточной частотой 4,33 МГц и имеет шаг сетки 10 КГц. Найдем необходимый коэффициент деления частоты. Поскольку гетеродин работает на частоте ниже принимаемой, то его частота равна 28000 - 4330 = 23670 [КГц]. Коэффициент деления будет определён, как: 23670: 10 = 2367 = 93F (hex) =100100111111 (bin).
Таким образом, последовательность битов примет следующий вид:

D0,D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,T0,T1,B0,B1,B2,TB,R0,R1,R2,S
1,0,0,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0 ,1

Cхема синтезатора частоты радиоприёмника десяти метрового диапазона представлена на Рис.4. Режим работы микросхемы синтезатора LM7001J определяется программой микроконтроллера ATtiny2313. Отображение информации происходит с помощью ЖКИ - индикатора типа МТ-16S2H (фирма - производитель «МЭЛТ»).

Синтезатор управляется шестью кнопками. При включении устройство начинает работать на частоте, заданной начальными условиями программы - это начало диапазона 28 МГц. На экране индикатора отображается надпись: «F =28 000 КГц» . Кнопка S2 позволяет осуществлять сканирование диапазона вверх с шагом сетки 10 КГц с интервалом в одну секунду. Нажатие кнопки S3 - делает тоже, но вниз по диапазону. Кнопки S4, S5 cлужат для увеличения или уменьшения частоты при нажатии только на один шаг сетки. Нажатием кнопки S7 осуществляется запись значения частоты в EEPROM микроконтроллера, а кнопка S6 позволяет считать записанное значение частоты.

Синтезатор DA2 получает информацию о значении частоты по управляющей шине (I2C). ГУН устройства, как было упомянуто выше, выполнен на основе генератора первого смесителя микросхемы МС3362, и сигнал с него подаётся на синтезатор. Активный фильтр, собранный на транзисторах VT1, VT2 обеспечивает изменение напряжения на варикапе ГУН, ликвидируя возникающую разность фаз между частотой ГУН и генератором образцового сигнала микросхемы синтезатора.

Программа микроконтроллера “Sintes” состоит из основного цикла, где осуществляется быстрое сканирование, а также запись и чтение частоты, и подпрограмм обработки внешних прерываний INT0 (Pulse0) и INT1 (Pulse1), с помощью которых осуществляется точная настройка приёмника. Следует отметить, что процесс записи информации в синтезатор выделен в отдельную подпрограмму (Frequenc), поскольку её повторение привело бы к неоправданному увеличению объёма всей программы. Сама подпрограмма декларирована в начале текста: Declare Sub Frequenc. Информация в LM7001 передаётся побайтно: в начале младший байт данных, затем старший, а далее через 1,5 мкс байт управления. Высокий уровень напряжения на PORTB.6 разрешает запись данных в сдвиговый регистр синтезатора (а низкий соответственно запрещает).
Текст программы с подробными комментариями приведён ниже:

$regfile = "attiny2313a.dat" "настройки микроконтроллера
$crystal = 4000000
$hwstack = 40
$swstack = 16
$framesize = 32
$sim

Config Scl = Portb.7 "конфигурирование I2C
Config Sda = Portb.5
Config I2cdelay= 10 ’частота 100 КГц
Config Portb.6 = Output "включ. - выкл. синтезатора
Config Int0 = Falling "по спаду импульса-вверх
Config Int1 = Falling "-вниз
Config Pind.5 = Input "запись в EEPROM
Config Pind.4 = Input "чтение из EEPROM
Config Pind.0 = Input "быстрое сканирование ввех
Config Pind.1 = Input "быстрое сканирование вниз
Config Debounce = 75 "антидребезг

Dim F As Integer "частота КГц
Dim K As Word "коэффициент деления
Dim Kh As Byte "старший байт коэфф. деления
Dim Kl As Byte "младший байт коэфф. деления

Const Up = &B10010000 "байт управления-модуляция FM, шаг=10 КГц
Const St = 10 "шаг - 10 КГц
Const Fp = 4330 "промежуточная частота=4330 KГц

$eeprom "инициализация EEPROM
Freq:
Data 10%

F = 28000 "начальное значение частоты - КГц

Declare Sub Frequenc "опред. подпрог. управления синтезатором

On Int0 Pulse0 "опред. подпрог. внешних прерываний
On Int1 Pulse1

Enable Interrupts "разрешение прерываний
Enable Int0
Enable Int1

Call Frequenc ’вызов подпрограммы управл. синтезатором
Do "основной цикл
If Portd.0 = 0 Then "быстрое сканирование вверх
F = F + 10 " увеличение частоты на 10 КГц
Call Frequenc "вызов подпрог. управления синтезатором
End If

If Portd.1 = 0 Then "быстрое сканирование вниз

Call Frequenc
End If

If Portd.5 = 0 Then "если кнопка PD5 нажата
Writeeeprom F , Freq "записать значение частоты в EEPROM
Waitms 10 "задержка 10 мс
End If

If Portd.4 = 0 Then "если кнопка PD4 нажата
Readeeprom F , Freq "считать значение частоты из EEPROM
Waitms 10
Call Frequenc
End If

Cls
Lcd "F=" ; F ; "KGz" "индикация значения частоты на ЖКИ
Wait 1 "задержка 1 сек
Loop

Sub Frequenc "подпрограмма управлением синтезатором
K = F - Fp "частота гетеродина
K = K / 10 "коэфф. деления частоты
Kl = K And &B0000000011111111 "младший байт коэфф. деления
K = K And &B1111111100000000
Shift K , Right , 8
Kh = K "старший байт коэфф. деления
Set Portb.6 "включение управления синтезатором
I2cstart
I2cwbyte Kl "отсыл младшего байта
I2cwbyte Kh "отсыл старшего байта
Nop "задержка 1,5 мкс
nop
nop
nop
nop
nop
I2cwbyte Up "отсыл байта управления
I2cstop
Reset Portb.6 "выключение управ. синтезатором
End Sub

Pulse0: "точное сканирование вверх
Waitms 75 "задержка 75 мс
F = F + 10 "увеличение частоты на 10 КГц
Call Frequenc "вызов подпрограммы упр. синтезатором
Return

Pulse1: "точное сканирование вниз
Waitms 75
F = F - 10 "уменьшение частоты на 10 КГц
Call Frequenc
Return

End "end program

Программа находится в

Простой, универсальный синтезатор на Si5351 до 160 МГц.

Si5351A — это генератор с тремя независимыми выходами, которые могут генерировать каждый отдельный сигнал от 8 кГц до 160 МГц. Чип SiLabs Si5351А является двоюродный братом известного и популярного Si570 , но гораздо меньше, и на много дешевле. В отличие от Si570 , Si5351A не имеет кварцевого кристалла внутри. Опорная частота может быть 25МГц или 27МГц. Может быть использован как кварцевый генератор или кварцевый резонатор. Si5351A, которая использует интерфейс I2C легко использовать с микроконтроллером Arduino. Все эти особенности, вместе с библиотекой программного обеспечения позволяют легко и быстро настроить Si5351A для использования в вашем следующем проекте в соответствии с вашими потребностями. Три независимых выхода идеально подходят для использования в качестве ГПД (VFO) в супергетеродине или трансивере. Маленький шаг настройки 1 Гц и большой диапазон частот делают его отличным выбором для таких проектов как приемники, трансиверы, техника прямого преобразование или SDR-техника, антенный анализатор, генератор сигналов или тактовый генератор. Дополнительный TCXO делает Si5351A особенно полезным в тех случаях, когда требуется высокая стабильность, необходимых, например, в передатчике WSPR или QRSS.


Предлагаемый синтезатор предназначен для использования в простых самодельных приемниках, трансиверах с кварцевым фильтром, в технике прямого преобразования, SDR — технике, где условием для их работы является удвоение или учетверение (Х2, Х4) частоты на выходе синтезатора. Причем для премо — передающих устройствах с одной ПЧ в районе 9МГц (может быть любая), нужные частоты «опоры» «снимаются» с дополнительного выхода Si5351. Что дает возможность отказаться от классических кварцевых опорных гетеродинов с подстраивающими частото — сдвигающими контурами, конденсаторами для выбора нужной боковой полосы. И при минимальных (никаких) знаниях пользователь сам может поменять, подстраивать их значения.


Так же не составит особого труда выбрать нужный для пользователя режим работы синтезатора.


1. Классический вариант с одним ПЧ и с опорой на борту.
2. Прямой выход. Синтезатор используется как генератор до 160 МГц.
3. Частоты на выходе синтезатора, умноженная на четыре . Для техники ПП, SDR.
4. Частоты на выходе синтезатора, умноженная на два . Для техники ПП, SDR.

В синтезаторе предусмотрено включение/выключение PRE/ATT (УВЧ, АТТ) по кругу с помощью одной кнопки. Так же планируется дешифратор для коммутации полосовых фильтров. Пока диапазоны уточняются. Схема и некоторые фото ниже.






Универсальный синтезатор частоты.

После публикации в схемы простого синтезатора частоты для УКВ радиостанции автор получал много просьб об изготовлении синтезатора на частоты 30-50 МГц. В данной статье описан синтезатор, который может быть с успехом применён в СВ - станциях, станциях типа "Лён" и др.Синтезатор предназначен для применения в радиопередающих устройствах в диапазоне 20000-65535 кГц с частотой ПЧ от 400 до 22000 кГц. Шаг сетки частот составляет 5 кГц.Есть возможность сканирования частот во всём рабочем диапазоне в режиме приёма.Напряжение питания синтезатора составляет 8…15В, ток потребления не более 50 мА.

Уровень высокочастотного сигнала на выходе синтезатора на нагрузке 50 Ом составляет не менее 0.1 В. Имеется три ячейки памяти. Частота синтезатора в режиме приёма выше, чем частота передачи на значение установленной промежуточной частоты.Управление микросхемой синтезатора осуществляется с помощью микроконтроллера AT90S1200. Индикация частоты производится с помощью ЖКИ индикатора, применяемого в импортных телефонах и АОНах.

При подаче напряжения питания синтезатор сразу начинает работу на частоте, записанной в 1-й ячейке памяти. На индикаторе отображается частота, на которой синтезатор будет работать в режиме передачи. Каждое нажатие на кнопку UP или DN приводит к смещению рабочей частоты на 5 кГц вверх или вниз. При нажатии на кнопку SCAN включается режим сканирования. Сканирование производится во всём диапазоне рабочих частот.Сигналом остановки сканирования служит уровень логического нуля, поданный на вывод "SCAN " микроконтроллера. Оптимальным образом для этой цели послужит ключ с открытым коллектором, поскольку выводы микроконтроллера, настроенные на ввод, притянуты к положительному источнику питания с помощью внутренних резисторов.При появлении в канале несущей сканирование приостанавливается и возобновляется через несколько секунд после её пропадания. Для выхода из режима сканирования достаточно нажать на одну из кнопок UP, DN, SCAN.Для перехода на частоту, записанную в одной из ячеек памяти, необходимо нажать на соответствующую кнопку 1….3. Для записи частоты в ячейку памяти необходимо набрать на индикаторе значение частоты, нажать кнопку с номером ячейки и, не отпуская, кнопку SAVE. При выключении питания информация, записанная в ячейках памяти, сохраняется.

Электрическая принципиальная схема синтезатора приведена на рис.1.

Путём перепрограммирования синтезатора с клавиатуры можно изменить его границы перестройки. Для корректировки нижней границы перестройки нужно нажать на кнопку «1» и подать напряжение питания. На индикаторе отобразится записанное ранее значение и цифра «1» в левой части индикатора. Кнопками «UP» или « DN» выставляют новое значение. Для записи в память необходимо нажать «1» , и, не отпуская её, «SAVE». После этого синтезатор необходимо отключить.

Для установки новой верхней границы включают синтезатор при нажатой кнопке «2».Новое значение граничной частоты набирают так же, как и нижнюю. Запись в память – нажатие «2», и не отпуская, «SAVE». Установка частоты ПЧ производится аналогично, при нажатии кнопки «3».

Границы диапазона синтезатора нужно устанавливать внимательно. При некорректном вводе(например, нижняя граница выше, чем верхняя) синтезатор будет работать неправильно. Кроме того, сумма верхней границы частоты синтезатора и частоты ПЧ не должна превышать 81915 Кгц. После новых значений нужно включить синтезатор и с помощью кнопок UP, DN или SCAN добиться того, чтобы частота установилась в рабочих пределах и занести в первую ячейку памяти значение, которое будет устанавливаться при включении синтезатора. Также нужно занести корректные значения во вторую и третью ячейки.

В. Гавриленко

В настоящее время промышленность выпускает , в которых реализован метод прямого или косвенного синтеза. Сущность прямого синтеза заключается в получении необходимой частоты путем выполнения операций умножения и деления частот гармонических составляющих высокостабильной частоты опорного генератора. При косвенном синтезе , управляемого напряжением (ГУН), уменьшается делителем с переменным коэффициентом деления (ДПКД) в требуемое количество раз. С выхода делителя частота подается на один из входов частотно-фазового детектора, на другой вход которого поступает сигнал с частотой, равной шагу изменения частоты синтезатора, полученной из частоты опорного генератора. Выходной сигнал частотно-фазового детектора проходит через (ФНЧ) и управляет частотой ГУН. Последняя изменяется до тех пор, пока частота на выходе ДПКД не станет равна шагу изменения частоты синтезатора и не достигает заданного значения, определяемого коэффициентом деления.

Большинство описанных методов хотя и дают возможность получать высокостабильные частоты, но обладают недостатками, практически не позволяющими основной массе радиолюбителей конструировать такие . И прежде всего это сложность реализации подобной конструкции из-за трудоемкости настройки, наличия большого количества фильтров, моточных изделий. Прибор, которого описана ниже, разработан по методу цифрового синтеза и свободен от этих недостатков.

Для пояснения метода цифрового синтеза вспомним, как работает частоты. Для преобразования аналогового сигнала синусоидальной формы в дискретный через определенные интервалы времени берутся выборки этого аналогового сигнала. Другими словами, мгновенное значение сигнала измеряется в момент выборки и преобразуется в цифровой код (число). Затем сигнал последовательности чисел с аналогоцифрового преобразователя (АЦП) подается на цифро-аналоговый (ЦАП), который преобразует числа в соответствующий уровень напряжения. Для «сглаживания» ступенек, образующихся при смене чисел, сигнал с выхода ЦАП подается на (ФНЧ). В процессе цифрового синтеза осуществляется по сути дела операция, обратная той, которая происходит в АЦП. В результате формируется последовательность импульсов напряжения, величины которых равны мгновенному значению синтезируемого сигнала, соответствующего данному значению текущей фазы. Эти импульсы подаются на ФНЧ, формирующий синусоидальную форму синтезируемого сигнала. Для упрощения фильтра количество импульсов на период частоты синтезируемого сигнала выбирается не менее пяти.

Накопитель фазы D1 представляет собой многоразрядный накапливающий двоичный , на вход которого подается число К, определяющее синтезируемую частоту. Содержимое накопителя увеличивается на величину К через интервалы времени, равные периоду частоты генератора опорной частоты. Двоичные числа на выходе накапливающего сумматора изменяются циклически от нуля до N - емкости накапливающего сумматора и соответствуют изменению текущей фазы от нуля до 360°. За время цикла формируется один период синтезируемой частоты. Чем больше число К, тем короче время цикла и, следовательно, короче период синтезируемой частоты. Изменяя это число, можно менять и синтезируемую частоту.

Двоичные числа, определяющие момент выборок на периоде синусоидального колебания, подаются с накопителя фазы на вычислитель мгновенных значений D2, в качестве которого используется постоянное запоминающее устройство (ПЗУ), где записаны заранее вычисленные значения выборок. Числа с выхода ПЗУ для преобразования в аналоговую форму подают на ЦАП. Оттуда сигнал поступает на ФНЧ U1, на выходе которого образуется выходной сигнал синтезатора.

Синтезируемую частоту определяют как / = КА/, где Af=fo/N - шаг изменения частоты синтезатора. При этом период частоты на выходе синтезатора формируе?ся по N/К выборкам. Емкость накапливающего сумматора N = 2 n , где п - количество его двоичных разрядов. Задаваясь максимальной синтезируемой частотой и шагом изменения частоты, можно по приведенным выше формулам рассчитать частоту опорного генератора и количество разрядов в накапливающем сумматоре.

Содержимое ПЗУ вычисляется по формуле

где entier(x)-целая часть числа X; т - адрес ПЗУ, который изменяется от нуля до 511.

Вычисленные величины мгновенных значений отсчетов на четверти периода синусоидального колебания приведены для компактности в шестнадцатиричной системе счисления в таблице. При пользовании таблицей следует помнить, что в этой системе счисления символам А, В, С, D, Е, F соответствуют числа 10, 11, 12, 13, 14, 15. Два старших разряда адреса ПЗУ приведены в левом вертикальном столб-

Содержимое ПЗУ микросхемы КР556РТ5 (1/4 SIN)

це, младший разряд в первой строке таблицы. Для примера определим содержимое ячейки ПЗУ с адресом 254. Этот адрес в шестнадцатиричной системе счисления записывается как FE. На пересечении строки F и столбца Е записано ВЗ, что соответствует числу 179 в десятичной системе счисления. Следовательно, по адресу 254 ПЗУ записано число 179.

Как уже упоминалось, синтезируемая частота задается восемнадцатиразрядным двоичным числом К. Так при К= 1 частота на выходе синтезатора равна 0,1 Гц, а при 7(=200 000 - 20 кГц. На рис. 3 показана задания частоты. Для удобства пользования синтезатором и упрощения индикации частоту в синтезаторе устанавливают с помощью шести переключателей ПП10-хВ. Каждый переключатель имеет десять положений (от нуля до девяти), и в его окне видна только одна цифра, соответствующая данному положению. Сигнал на выходах каждого переключателя (выводы А, В, О, Е) представляет собой четырехразрядное двоичное число, а на выходах всех переключателей - значение частоты в двоично-десятичном коде. Для управления частотой синтезатора двоично-десятичный код, набранный с помощью переключателей, необходимо преобразовать в двоичный. Это делают , выполненный DD1, DD2, DD7, DD8, DD13, DD14, двоичный счетчик DD4, DD10, DDI5, а также регистры DD5, DD6, DDI1, DD12 и DD16. На микросхеме DD3 выполнен тактовых сигналов. Для того чтобы процесс преобразования двоично-десятичного кода в двоичный на самой высокой частоте не превышал одной секунды, выбрана равной 400…500 кГц.

31-й и 32-й выставок творчества радиолюбителей /Сост. В. М. Бондаренко.- М.: ДОСААФ, 1989,- 112 с., ил.